Изучаемые статистические процессы и явления в сфере демографии, в социальной и политической областях, как правило, характеризуется внутренней структурой, которая с течением времени может изменяться. Динамика структуры вызывает изменение внутреннего содержания исследуемых объектов, приводит к изменению установившихся причинно-следственных связей. Именно поэтому изучение структуры и структурных сдвигов занимает важное место в курсе теории статистики.
В статистике под структурой
понимают совокупность единиц, обладающих определенной устойчивостью внутригрупповых связей при сохранении основных признаков, характеризующих эту совокупность как целое. Основные направления изучения структуры включают:
а) характеристику структурных сдвигов отдельных частей совокупности за два и более периодов;
б) обобщающую характеристику структурных сдвигов в целом по совокупности;
в) оценку концентрации и централизации.
Рассмотрим последовательно эти направления исследования.
Частные показатели структурных сдвигов
. Анализ структуры и ее изменений базируется на относительных показателях структуры – долях и удельных весах, представляющих собой соотношение размеров частей и целого. При этом как частные, так и обобщающие показатели структурных сдвигов могут отражать либо «абсолютное» изменение структуры в процентных долях или долях единицы (кавычки показывают, что данные показатели являются абсолютными по методологии расчета, но не по единицам измерения), либо ее относительное изменение в процентах или коэффициентах.
Абсолютный прирост удельного веса i-й части совокупности показывает, на сколько процентных пунктов возросла или уменьшилась данная структурная часть и j-й период по сравнению с (j-1) периодом:
;
где dij – удельный вес (доля) i-й части совокупности в j-й период;
dij-1 – удельный вес (доля) i-й части совокупности в j-1 период.
Знак прироста показывает направление изменения удельного веса данной структуры части («+» – увеличение, «–» – уменьшение), а его значение – конкретную величину этого изменения.
Темп роста удельного веса представляет собой отношение удельного веса i-й части совокупности в j-й период времени к удельному весу той же части в предшествующий период:
.
Темпы роста удельного веса выражаются в процентах и всегда являются положительными величинами. Однако, если в совокупности имели место какие-либо структурные изменения, часть темпов роста будет больше 100%, а часть – меньше.
Если изучаемая структура представлена данными за три и более периода, появляется необходимость в динамическом осреднении приведенных выше показателей, то есть в расчете средних показателей структурных сдвигов.
Средний «абсолютный» прирост удельного веса i-й структурной части показывает, на сколько процентных пунктов в среднем за какой-либо период (день, неделю, месяц, год и т.п.) изменяется данная структурная часть:
,
где n – число осредняемых периодов.
Сума средних «абсолютных» приростов удельных весов всех k структурных частей совокупности, так же как и сумма их приростов за один временной интервал, должна быть равна нулю.
Средний темп роста удельного веса характеризует среднее относительное изменение удельного веса i-й структурной части за n периодов и рассчитывается по формуле средней геометрической:
.
Подкоренное выражение этой формулы представляет собой последовательное произведение цепных темпов роста удельного веса за все временные интервалы. После проведения несложных алгебраических преобразований данная формула примет следующий вид:
.
При анализе структуры исследуемого объекта или явления за ряд периодов также можно определить средний удельный вес каждой i-й части за весь рассматриваемый временной интервал. Однако для его расчета одних лишь относительных данных об удельных весах структурных частей недостаточно, необходимо располагать еще и информацией о размерах этих частей в абсолютном выражении. Используя эти данные, средний удельный вес любой i-й структурной части можно определить по формуле:
,
где Xij - величина i-й структурной части в j-й период времени в абсолютном выражении.
Обобщающие показатели структурных сдвигов
. В отдельных случаях исследователю необходимо в целом оценить структурные изменения в изучаемом социальном явлении за определенный временной интервал, которые характеризуют подвижность или стабильность данной структуры. Как правило, это требуется для сравнения динамики одной и той же структуры в различные периоды или несколько структур, относящихся к разным объектам. Во втором случае число структурных частей у разных объектов необязательно должно совпадать.