Предположим, что после второго замера произошли сдвиги рангов: 1—2, 3—5, 6—10, 11—13 и 14—15. Иными словами, многие из тех, кто, например, первоначально приписывал данному объекту 6-й ранг, во втором замере приписали ему 7-й, 8-й, 9-й или даже 10-й. Определив неустойчивые области, мы можем в основном исследовании, не изменяя инструкции для ранжирования, при анализе данных преобразовать 15-ранговую шкалу в 5-ранговую, как показано на схеме, т. е. обеспечить большую устойчивость и надежность данных ранжирования (схема 9).13
13 Подробнее см. [232. C. 74-77]
Помимо того, что оценка уровня устойчивости итогов ранжирования — способ повышения надежности шкалы, это к тому же и показатель содержательного характера. Объекты, в отношении которых опрашиваемые неуверены (ранги таких объектов смещаются), по-видимому, обладают для них меньшей субъективной значимостью, выпадают из сферы повседневных интересов.
Нередко приходится ранжировать множество объектов, существенно больше 15. Объединение рангов здесь также помогает повысить устойчивость, но одновременно резко снижает чувствительность шкалы. В таком случае можно прибегнуть к несколько более трудоемкой для анализа, но более простой для респондента и более надежной процедуре ранжирования методом парных сравнений [75; 193; 231; 265].
Ранжирование состоит в том, что предлагается попарно сопоставить предпочтительность объектов (пусть очень обширного списка) путем всех возможных их парных комбинаций.
Допустим, что у нас имеется 25 кандидатов, участвующих в выборах, ранжировать которых задача психологически почти невыполнимая. Тогда при массовом опросе накануне выборов (во время самих выборов избиратель просто голосует "да—нет" в отношении каждого кандидата) предложим следующее задание: "Из всех перечисленных попарно кандидатов в каждой из пар выберите того, который кажется Вам более предпочтительным из данной пары. Не пропускайте ни одной строчки. Предпочитаемого кандидата обведите в кружок" (схема 10).
Поскольку объекты А и Е имеют равное число выборов (по 1), им приписывается одинаковый ранг, а так как число перестановок оказывается весьма большим, то одинаковые значения получат несколько объектов. Доказано, что результаты такого ранжирования весьма устойчивы.14 И тогда в нашем примере основания для прогноза исхода реальных выборов становятся более надежными (хотя они будут зависеть и от других, неучтенных здесь обстоятельств).15
14 Надежность парных сравнений существенно повышается, если предлагается оценить предпочтительность одного из двух объектов не дихотомически (либо-либо), а в пяти-семибалльной шкале. Такой способ применил В. А. Лосепков при разработке методики изучения социальных установок [235. С. 220— 222].
15 См. об этом на с. 470.
Операции с числами. Прежде всего следует помнить, что интервалы в школе не равны, поэтому числа обозначают лишь порядок следования признаков. И операции с числами — это операции с рангами, но не с количественным выражением свойств в каждом пункте.
1. Числа поддаются монотонным преобразованиям: их можно заменить другими с сохранением прежнего порядка (именно поэтому шкалы данного типа называют также порядковыми). Так, вместо ранжирования от 1 до 5 можно упорядочить тот же ряд в числах от 2 до 10 или от (—1) до (+1). Отношения между рангами останутся неизменными:
Это свойство важно в тех случаях, когда данные, измеренные шкалами с различным числом интервалов, приходится приводить к "общему знаменателю", т. е. выражать в одной шкале с постоянной величиной заданных интервалов.